The role of iron in the activation-inactivation of aconitase.

نویسندگان

  • M C Kennedy
  • M H Emptage
  • J L Dreyer
  • H Beinert
چکیده

Methods are described for the convenient preparation of aconitase from beef heart mitochondria in its inactive [3Fe-4S] form and largely in its active [4Fe-4S] form. Inactive aconitase can be activated anaerobically by various reducing agents without addition of iron. Under these conditions, maximally 70-80% of the activity attainable in the presence of added iron can be reached. It is concluded that during activation without added iron, [4Fe-4S] clusters are built from [3Fe-4S] clusters at the expense of a fraction of the 3Fe clusters present. This explains the approximately 75% maximal activation observed and concomitant loss of approximately 25% of total clusters as quantitated by EPR. Time course plots of aconitase activation appear to be second order but are not amenable to simple kinetic analysis because of the requirements of both reduction and Fe2+ for activation. Activation of aconitase with 59Fe leads to rapid (minutes) incorporation of 1 iron atom/cluster, which on subsequent inactivation is readily lost again. With longer incubation times (hour), 59Fe is found in more than a single site/cluster. It is concluded that, in analogy to cluster loss during activation in absence of added iron, the appearance of 59Fe in more than one cluster site can be due to complete breakdown and rebuilding of clusters. However, exchange into intact clusters cannot be ruled out. Ferric iron can be bound nonspecifically to active and inactive aconitase but can be readily removed by chelating agents. Sulfide is not required for activation of aconitase in keeping with the proposal that inactive aconitase, as isolated, contains a [3Fe-4S] cluster. It is demonstrated that oxidation initiates the inactivation of aconitase with concomitant release of iron and formation of 3Fe clusters as determined by EPR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oxidative Inactivation of Mitochondrial Aconitase Results in Iron and H2O2-Mediated Neurotoxicity in Rat Primary Mesencephalic Cultures

BACKGROUND Mitochondrial oxidative stress is a contributing factor in the etiology of numerous neuronal disorders. However, the precise mechanism(s) by which mitochondrial reactive oxygen species (ROS) modify cellular targets to induce the death of neurons remains unknown. The goal of this study was to determine if oxidative inactivation of mitochondrial aconitase (m-aconitase) resulted in the ...

متن کامل

Reversible redox-dependent modulation of mitochondrial aconitase and proteolytic activity during in vivo cardiac ischemia/reperfusion.

Prooxidents can induce reversible inhibition or irreversible inactivation and degradation of the mitochondrial enzyme aconitase. Cardiac ischemia/reperfusion is associated with an increase in mitochondrial free radical production. In the current study, the effects of reperfusion-induced production of prooxidants on mitochondrial aconitase and proteolytic activity were determined to assess wheth...

متن کامل

Nitric oxide sensitivity of the aconitases.

Aconitases are important cellular targets of nitric oxide (NO.) toxicity, and NO.-derived species, rather than NO. per se, have been proposed to mediate their inactivation. NO.-mediated inactivation of the Escherichia coli aconitase and the porcine mitochondrial aconitase was investigated. In E. coli, aconitase activity decreased by approximately 70% during a 2-h exposure to an atmosphere conta...

متن کامل

Indomethacin, a non-steroidal anti-inflammatory drug, develops gastropathy by inducing reactive oxygen species-mediated mitochondrial pathology and associated apoptosis in gastric mucosa: a novel role of mitochondrial aconitase oxidation.

We have investigated the role of mitochondria on the development of indomethacin (a non-steroidal anti-inflammatory drug)-induced gastric mucosal apoptosis and associated gastropathy in rat. Transmission electron microscopic studies indicate that indomethacin damages mitochondrial ultrastructure and causes mitochondrial dysfunction as evident from decreased stage-3 respiration, dehydrogenase ac...

متن کامل

Reciprocal control of RNA-binding and aconitase activity in the regulation of the iron-responsive element binding protein: role of the iron-sulfur cluster.

Several mechanisms of posttranscriptional gene regulation are involved in regulation of the expression of essential proteins of iron metabolism. Coordinate regulation of ferritin and transferrin receptor expression is produced by binding of a cytosolic protein, the iron-responsive element binding protein (IRE-BP) to specific stem-loop structures present in target RNAs. The affinity of this prot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 258 18  شماره 

صفحات  -

تاریخ انتشار 1983